Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Handbook of 3D Integration, Volume 3 - 3D Process Technology
  Großes Bild
 
Handbook of 3D Integration, Volume 3 - 3D Process Technology
von: Philip Garrou, Mitsumasa Koyanagi, Peter Ramm
Wiley-VCH, 2014
ISBN: 9783527670123
474 Seiten, Download: 39723 KB
 
Format: EPUB, PDF
geeignet für: geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Handbook of 3D Integration: 3D Process Technology 1  
     Contents 7  
     List of Contributors 19  
     1 3D IC Integration Since 2008 25  
        1.1 3D IC Nomenclature 25  
        1.2 Process Standardization 26  
        1.3 The Introduction of Interposers (2.5D) 28  
        1.4 The Foundries 30  
           1.4.1 TSMC 30  
           1.4.2 UMC 31  
           1.4.3 GlobalFoundries 31  
        1.5 Memory 31  
           1.5.1 Samsung 31  
           1.5.2 Micron 32  
           1.5.3 Hynix 33  
        1.6 The Assembly and Test Houses 33  
        1.7 3D IC Application Roadmaps 34  
        References 35  
     2 Key Applications and Market Trends for 3D Integration and Interposer Technologies 37  
        2.1 Introduction 37  
        2.2 Advanced Packaging Importance in the Semiconductor Industry is Growing 40  
        2.3 3D Integration-Focused Activities – The Global IP Landscape 42  
        2.4 Applications, Technology, and Market Trends 46  
        References 56  
     3 Economic Drivers and Impediments for 2.5D/3D Integration 57  
        3.1 3D Performance Advantages 57  
        3.2 The Economics of Scaling 57  
        3.3 The Cost of Future Scaling 58  
        3.4 Cost Remains the Impediment to 2.5D and 3D Product Introduction 61  
           3.4.1 Required Economics for Interposer Use in Mobile Products 62  
           3.4.2 Silicon Interposer Pricing 62  
        References 64  
     4 Interposer Technology 65  
        4.1 Definition of 2.5D Interposers 65  
        4.2 Interposer Drivers and Need 66  
        4.3 Comparison of Interposer Materials 68  
        4.4 Silicon Interposers with TSV 69  
        4.5 Lower Cost Interposers 72  
           4.5.1 Glass Interposers 72  
              4.5.1.1 Challenges in Glass Interposers 73  
              4.5.1.2 Small-Pitch Through-Package Via Hole Formation and Ultrathin Glass Handling 73  
              4.5.1.3 Metallization of Glass TPV 75  
              4.5.1.4 Reliability of Copper TPVs in Glass Interposers 76  
              4.5.1.5 Thermal Dissipation of Glass 77  
              4.5.1.6 Glass Interposer Fabrication with TPV and RDL 77  
           4.5.2 Low-CTE Organic Interposers 77  
           4.5.3 Polycrystalline Silicon Interposer 79  
              4.5.3.1 Polycrystalline Silicon Interposer Fabrication Process 80  
        4.6 Interposer Technical and Manufacturing Challenges 81  
        4.7 Interposer Application Examples 82  
        4.8 Conclusions 84  
        References 85  
     5 TSV Formation Overview 89  
        5.1 Introduction 89  
        5.2 TSV Process Approaches 91  
           5.2.1 TSV-Middle Approach 92  
           5.2.2 Backside TSV-Last Approach 92  
           5.2.3 Front-Side TSV-Last Approach 93  
        5.3 TSV Fabrication Steps 94  
           5.3.1 TSV Etching 94  
           5.3.2 TSV Insulation 95  
           5.3.3 TSV Metallization 95  
           5.3.4 Overburden Removal by CMP 96  
           5.3.5 TSV Anneal 97  
           5.3.6 Temporary Carrier Wafer Bonding and Debonding 98  
           5.3.7 Wafer Thinning and TSV Reveal 98  
        5.4 Yield and Reliability 99  
        References 100  
     6 TSV Unit Processes and Integration 103  
        6.1 Introduction 103  
        6.2 TSV Process Overview 104  
        6.3 TSV Unit Processes 106  
           6.3.1 Etching 106  
           6.3.2 Insulator Deposition with CVD 107  
           6.3.3 Metal Liner/Barrier Deposition with PVD 108  
           6.3.4 Via Filling by ECD of Copper 108  
           6.3.5 CMP of Copper 109  
           6.3.6 Temporary Bonding between Carrier and Device Wafer 110  
           6.3.7 Wafer Backside Thinning 110  
           6.3.8 Backside RDL 111  
           6.3.9 Metrology, Inspection, and Defect Review 111  
        6.4 Integration and Co-optimization of Unit Processes in Via Formation Sequence 112  
        6.5 Co-optimization of Unit Processes in Backside Processing and Via-Reveal Flow 113  
        6.6 Integration and Co-optimization of Unit Processes in Via-Last Flow 115  
        6.7 Integration with Packaging 116  
        6.8 Electrical Characterization of TSVs 116  
        6.9 Conclusions 120  
        References 121  
     7 TSV Formation at ASET 123  
        7.1 Introduction 123  
        7.2 Via-Last TSV for Both D2D and W2W Processes in ASET 127  
        7.3 TSV Process for D2D 129  
           7.3.1 Front-Side Bump Forming 130  
           7.3.2 Attach WSS and Thinning 130  
           7.3.3 Deep Si Etching from the Backside 131  
           7.3.4 Liner Deposition 131  
           7.3.5 Removal of SiO2 at the Bottom of Via 131  
           7.3.6 Barrier Metal and Seed Layer Deposition by PVD 134  
           7.3.7 Cu Electroplating 134  
           7.3.8 CMP 134  
           7.3.9 Backside Bump 135  
           7.3.10 Detach WSS 135  
           7.3.11 Dicing 136  
        7.4 TSV Process for W2W 137  
           7.4.1 Polymer Layer Coat and Development 138  
           7.4.2 Barrier Metal and Seed Layer Deposition 138  
           7.4.3 Cu Plating 138  
           7.4.4 CMP 139  
           7.4.5 First W2W Stacking (Face to Face) 140  
           7.4.6 Wafer Thinning and Deep Si Etching 140  
           7.4.7 TSV Liner Deposition and SiO2 Etching of Via Bottom 141  
           7.4.8 Barrier Metal and Seed Layer Deposition and Cu Plating 141  
           7.4.9 CMP 141  
           7.4.10 Next W2W Stacking 142  
        7.5 Conclusions 143  
        References 143  
     8 Laser-Assisted Wafer Processing: New Perspectives in Through-Substrate Via Drilling and Redistribution Layer Deposition 145  
        8.1 Introduction 145  
        8.2 Laser Drilling of TSVs 145  
           8.2.1 Cost of Ownership Comparison 145  
           8.2.2 Requirements for an Industrial TSV Laser Driller 147  
           8.2.3 Drilling Strategy 148  
              8.2.3.1 Mechanical 148  
              8.2.3.2 Optical 149  
           8.2.4 Experimental Drilling Results 150  
        8.3 Direct-Write Deposition of Redistribution Layers 150  
           8.3.1 Introduction on Redistribution Layers 150  
           8.3.2 Direct-Write Characteristics 151  
           8.3.3 Direct-Write Laser-Induced Forward Transfer 152  
           8.3.4 LIFT Results 154  
        8.4 Conclusions and Outlook 155  
        References 156  
     9 Temporary Bonding Material Requirements 159  
        9.1 Introduction 159  
        9.2 Technology Options 160  
           9.2.1 Tapes and Waxes 160  
           9.2.2 Chemical Debonding 160  
           9.2.3 Thermoplastic Bonding Material and Slide Debonding 160  
           9.2.4 Debonding Using Release Layers 161  
        9.3 Requirements of a Temporary Bonding Material 162  
        9.4 Considerations for Successful Processing 163  
           9.4.1 Application of the Temporary Bonding Adhesive to the Device Wafer and Bonding to Carrier 163  
           9.4.2 Moisture and Contaminants on Surface 163  
           9.4.3 Total Thickness Variation 164  
           9.4.4 Squeeze Out 164  
        9.5 Surviving the Backside Process 165  
           9.5.1 Edge Trimming 166  
           9.5.2 Edge Cleaning 166  
           9.5.3 Temperature Excursions in Plasma Processes 167  
           9.5.4 Wafer Warpage due to CTE Mismatch 167  
        9.6 Debonding 168  
           9.6.1 Debonding Parameters in Slide-Off Debonding 168  
           9.6.2 Mechanical Damage to Interconnects 168  
        References 169  
     10 Temporary Bonding and Debonding – An Update on Materials and Methods 171  
        10.1 Introduction 171  
        10.2 Carrier Selection for Temporary Bonding 172  
        10.3 Selection of Temporary Bonding Adhesives 175  
        10.4 Bonding and Debonding Processes 176  
        10.5 Equipment and Process Integration 179  
        References 180  
     11 ZoneBOND®: Recent Developments in Temporary Bonding and Room-Temperature Debonding 183  
        11.1 Introduction 183  
        11.2 Thin Wafer Processing 183  
           11.2.1 Thin Wafer Total Thickness Variation 185  
           11.2.2 Wafer Alignment 187  
        11.3 ZoneBOND Room-Temperature Debonding 187  
        11.4 Conclusions 189  
        References 190  
     12 Temporary Bonding and Debonding at TOK 191  
        12.1 Introduction 191  
        12.2 Zero Newton Technology 192  
           12.2.1 The Wafer Bonder 192  
           12.2.2 The Wafer Debonder 194  
           12.2.3 The Wafer Bonder and Debonder Equipment Lineups 194  
           12.2.4 Adhesives 194  
           12.2.5 Integration Process Performance 196  
        12.3 Conclusions 198  
        References 198  
     13 The 3M™ Wafer Support System (WSS) 199  
        13.1 Introduction 199  
        13.2 System Description 199  
        13.3 General Advantages 201  
        13.4 High-Temperature Material Solutions 202  
        13.5 Process Considerations 204  
           13.5.1 Wafer and Adhesive Delamination 204  
           13.5.2 LTHC Glass Delamination 205  
        13.6 Future Directions 205  
           13.6.1 Thermal Stability 205  
           13.6.2 Elimination of Adhesion Control Agents 206  
           13.6.3 Laser-Free Release Layer 207  
        13.7 Summary 207  
        Reference 208  
     14 Comparison of Temporary Bonding and Debonding Process Flows 209  
        14.1 Introduction 209  
        14.2 Studies of Wafer Bonding and Thinning 210  
        14.3 Backside Processing 210  
        14.4 Debonding and Cleaning 212  
        References 213  
     15 Thinning, Via Reveal, and Backside Processing – Overview 215  
        15.1 Introduction 215  
        15.2 Wafer Edge Trimming 216  
        15.3 Thin Wafer Support Systems 218  
           15.3.1 Glass Carrier Support System with Laser Debonding Approach 220  
           15.3.2 Thermoplastic Glue Thin Wafer Support System – Thermal Slide Debondable System 220  
           15.3.3 Room-Temperature, Peel-Debondable Thin Wafer Support Systems 221  
        15.4 Wafer Thinning 222  
        15.5 Thin Wafer Backside Processing 226  
           15.5.1 Via-Middle Thin Wafer Backside Processing: “Via-Reveal” Process 226  
              15.5.1.1 Mechanical Via Reveal 226  
              15.5.1.2 “Soft” Via Reveal 226  
           15.5.2 Via-Last Thin Wafer Backside Processing 227  
        References 229  
     16 Backside Thinning and Stress-Relief Techniques for Thin Silicon Wafers 231  
        16.1 Introduction 231  
        16.2 Thin Semiconductor Devices 231  
        16.3 Wafer Thinning Techniques 232  
           16.3.1 Wafer Grinding 233  
           16.3.2 Wet-Chemical Spin Etching 234  
           16.3.3 CMP Polishing 235  
           16.3.4 Plasma Dry Etching 236  
           16.3.5 Dry Polish 237  
           16.3.6 Chemical–Mechanical Grinding (CMG) 238  
        16.4 Fracture Tests for Thin Silicon Wafers 238  
        16.5 Comparison of Stress-Relief Techniques for Wafer Backside Thinning 240  
        16.6 Process Flow for Wafer Thinning and Dicing 244  
        16.7 Summary and Outlook on 3D Integration 246  
        References 247  
     17 Via Reveal and Backside Processing 251  
        17.1 Introduction 251  
        17.2 Via Reveal and Backside Processing in Via-Middle Process 251  
        17.3 Backside Processing in Back-Via Process 256  
        17.4 Backside Processing and Impurity Gettering 258  
        17.5 Backside Processing for RDL Formation 261  
        References 263  
     18 Dicing, Grinding, and Polishing (Kiru Kezuru and Migaku) 265  
        18.1 Introduction 265  
        18.2 Grinding and Polishing 265  
           18.2.1 Grinding General 265  
              18.2.1.1 Grinding Method 265  
              18.2.1.2 Rough Grinding and Fine Grinding 266  
              18.2.1.3 The Grinder Polisher 267  
           18.2.2 Thinning 267  
              18.2.2.1 Stress Relief 269  
              18.2.2.2 Die Attach Film 270  
              18.2.2.3 All-in-One System 270  
              18.2.2.4 Dicing Before Grinding 270  
           18.2.3 Grinding Topics for 3DIC Such as TSV Devices 270  
              18.2.3.1 Wafer Support System 270  
              18.2.3.2 Edge Trimming 271  
              18.2.3.3 Grinding to Improve Flatness 272  
              18.2.3.4 Higher Level of Cleanliness 272  
              18.2.3.5 Via Reveal 273  
              18.2.3.6 Planarization 273  
        18.3 Dicing 274  
           18.3.1 Blade Dicing General 274  
              18.3.1.1 Dicing Method 274  
              18.3.1.2 Blade Dicing Point 274  
              18.3.1.3 Blade 275  
              18.3.1.4 Optimization of Process Control 276  
              18.3.1.5 Dicer 276  
              18.3.1.6 Dual Dicing Applications 276  
           18.3.2 Thin Wafer Dicing 277  
           18.3.3 Low-k Dicing 278  
           18.3.4 Other Laser Dicing 278  
              18.3.4.1 Ablation 278  
              18.3.4.2 Laser Full Cut Application 279  
              18.3.4.3 Stealth Dicing (SD) 280  
           18.3.5 Dicing Topics for 3D-IC Such as TSV 281  
              18.3.5.1 Cutting of Chip on Chip (CoC) and Chip on Wafer (CoW) 282  
              18.3.5.2 Singulation of CoW and Wafer on Wafer (WoW) 283  
        18.4 Summary 284  
        Further Reading 284  
     19 Overview of Bonding and Assembly for 3D Integration 285  
        19.1 Introduction 285  
        19.2 Direct, Indirect, and Hybrid Bonding 286  
        19.3 Requirements for Bonding Process and Materials 287  
        19.4 Bonding Quality Characterization 291  
        19.5 Discussion of Specific Bonding and Assembly Technologies 293  
        19.6 Summary and Conclusions 297  
        References 298  
     20 Bonding and Assembly at TSMC 303  
        20.1 Introduction 303  
        20.2 Process Flow 304  
        20.3 Chip-on-Wafer Stacking 305  
        20.4 CoW-on-Substrate (CoWoS) Stacking 307  
        20.5 CoWoS Versus CoCoS 307  
        20.6 Testing and Known Good Stacks (KGS) 308  
        20.7 Future Perspectives 309  
        References 309  
     21 TSV Packaging Development at STATS ChipPAC 311  
        21.1 Introduction 311  
        21.2 Development of the 3DTSV Solution for Mobile Platforms 313  
        21.3 Alternative Approaches and Future Developments 317  
        References 318  
     22 Cu–SiO2 Hybrid Bonding 319  
        22.1 Introduction 319  
        22.2 Blanket Cu–SiO2 Direct Bonding Principle 320  
           22.2.1 Chemical–Mechanical Polishing Parameters 320  
        22.3 Aligned Bonding 323  
           22.3.1 Wafer-to-Wafer Bonding 323  
           22.3.2 Die-to-Wafer Bonding in Pick-and-Place Equipment 323  
           22.3.3 Die-to-Wafer by the Self-Assembly Technique 324  
        22.4 Blanket Metal Direct Bonding Principle 326  
        22.5 Electrical Characterization 328  
           22.5.1 Wafer-to-Wafer and Die-to-Wafer Copper-Bonding Electrical Characterization 328  
           22.5.2 Reliability 331  
           22.5.3 Thermal Cycling 331  
           22.5.4 Stress Voiding (SIV) Test on 200° C Postbonding Annealed Samples 332  
           22.5.5 Package-Level Electromigration Test 333  
        22.6 Conclusions 334  
        References 335  
     23 Bump Interconnect for 2.5D and 3D Integration 337  
        23.1 History 337  
        23.2 C4 Solder Bumps 339  
        23.3 Copper Pillar Bumps 340  
        23.4 Cu Bumps 343  
        23.5 Electromigration 344  
        References 346  
     24 Self-Assembly Based 3D and Heterointegration 349  
        24.1 Introduction 349  
        24.2 Self-Assembly Process 349  
        24.3 Key Parameters of Self-Assembly on Alignment Accuracies 351  
        24.4 How to Interconnect Self-Assembled Chips to Chips or Wafers 352  
           24.4.1 Flip-Chip-to-Wafer 3D Integration 353  
           24.4.2 Reconfigured-Wafer-to-Wafer 3D Integration 355  
        References 356  
     25 High-Accuracy Self-Alignment of Thin Silicon Dies on Plasma-Programmed Surfaces 359  
        25.1 Introduction 359  
        25.2 Principle of Fluidic Self-Alignment Process for Thin Dies 359  
        25.3 Plasma Programming of the Surface 360  
        25.4 Preparation of Materials for Self-Alignment Experiments 361  
        25.5 Self-Alignment Experiments 362  
        25.6 Results of Self-Alignment Experiments 363  
        25.7 Discussion 365  
        25.8 Conclusions 366  
        References 367  
     26 Challenges in 3D Fabrication 369  
        26.1 Introduction 369  
        26.2 High-Volume Manufacturing for 3D Integration 370  
        26.3 Technology Challenges 370  
        26.4 Front-Side and Backside Wafer Processes 370  
        26.5 Bonding and Underfills 374  
        26.6 Multitier Stacking 376  
        26.7 Wafer Thinning and Thin Die and Wafer Handling 377  
        26.8 Strata Packaging and Assembly 380  
        26.9 Yield Management 383  
        26.10 Reliability 384  
        26.11 Cost Management 386  
        26.12 Future Perspectives 386  
        References 388  
     27 Cu TSV Stress: Avoiding Cu Protrusion and Impact on Devices 389  
        27.1 Introduction 389  
        27.2 Cu Stress in TSV 389  
        27.3 Mitigation of Cu Pumping 392  
        27.4 Impact of TSVs on FEOL Devices 395  
        References 402  
     28 Implications of Stress/Strain and Metal Contamination on Thinned Die 403  
        28.1 Introduction 403  
        28.2 Impacts of Cu Contamination on Device Reliabilities in Thinned 3DLSI 403  
        28.3 Impacts of Local Stress and Strain on Device Reliabilities in Thinned 3DLSI 410  
           28.3.1 Microbump-Induced Stresses in Stacked LSIs 411  
           28.3.2 Microbump-Induced TMS in LSI 412  
           28.3.3 Microbump-Induced LMS 413  
        References 415  
     29 Metrology Needs for 2.5D/3D Interconnects 417  
        29.1 Introduction: 2.5D and 3D Reference Flows 417  
        29.2 TSV Formation 418  
           29.2.1 TSV Etch Metrology 419  
           29.2.2 Liner, Barrier, and Seed Metrology 421  
           29.2.3 Copper Fill Metrology (TSV Voids) 423  
           29.2.4 Cross-Sectional SEM (Focused Ion Beam Milling Sample Preparation) 424  
           29.2.5 X-Ray Microscopy and CT Inspection 424  
           29.2.6 Stress Metrology in Cu and Si 426  
        29.3 MEOL Metrology 428  
           29.3.1 Edge Trim Inspection 429  
           29.3.2 Bond Voids and Bond Strength Metrology 430  
              29.3.2.1 Acoustic Microscopy: Operation 431  
              29.3.2.2 Acoustic Microscopy for Defect Inspection and Review 431  
              29.3.2.3 Other Bond Void Detection Techniques 432  
           29.3.3 Bond Strength Metrology 433  
           29.3.4 Bonded Wafer Thickness, Bow, and Warp 434  
              29.3.4.1 Chromatic White Light 435  
              29.3.4.2 Infrared Interferometry 436  
              29.3.4.3 White Light Interferometry (or Coherence Scanning Interferometry) 438  
              29.3.4.4 Laser Profiling 439  
              29.3.4.5 Capacitance Probes 439  
              29.3.4.6 Differential Backpressure Metrology 441  
              29.3.4.7 Acoustic Microscopy for Measuring Bonded Wafer Thickness 441  
           29.3.5 TSV Reveal Metrology 442  
        29.4 Assembly and Packaging Metrology 444  
           29.4.1 Wafer-Level C4 Bump and Microbump Metrology and Inspection 445  
           29.4.2 Package-Level Inspection: Scanning Acoustic Microscopy 446  
           29.4.3 Package-Level Inspection: X-Rays 448  
        29.5 Summary 450  
        References 451  
     Index 455  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  Audiobooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz