Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Methods and Applications of Statistics in Clinical Trials, Volume 2 - Planning, Analysis, and Inferential Methods
  Großes Bild
 
Methods and Applications of Statistics in Clinical Trials, Volume 2 - Planning, Analysis, and Inferential Methods
von: N. Balakrishnan
Wiley, 2014
ISBN: 9781118595978
963 Seiten, Download: 106600 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 5  
  Copyright Page 6  
  Contents 7  
  Contributors 21  
  Preface 25  
  1 Analysis of Over- and Underdispersed Data 27  
     1.1 Introduction 27  
     1.2 Overdispersed Binomial and Count Models 28  
        1.2.1 Overdispersed Binomial Model 28  
        1.2.2 Overdispersed Poisson Model 28  
        1.2.3 Example 30  
     1.3 Other Approaches to Account for Overdispersion 30  
        1.3.1 Generalized Linear Mixed Model 30  
        1.3.2 Zero-Inflated Models 32  
     1.4 Underdispersion 32  
     1.5 Software Notes 33  
     References 33  
  2 Analysis of Variance (ANOVA) 36  
     2.1 Introduction 36  
     2.2 Factors, Levels, Effects, and Cells 37  
     2.3 Cell Means Model 38  
     2.4 One-Way Classification 38  
        2.4.1 Example 1 38  
     2.5 Parameter Estimation 39  
     2.6 The R(.) Notation—Partitioning Sum of Squares 39  
     2.7 ANOVA—Hypothesis of Equal Means 41  
     2.8 Multiple Comparisons 42  
     2.9 Two-Way Crossed Classification 43  
     2.10 Balanced and Unbalanced Data 43  
     2.11 Interaction Between Rows and Columns 46  
     2.12 Analysis of Variance Table 46  
     References 50  
  3 Assessment of Health-Related Quality of Life 52  
     3.1 Introduction 52  
     3.2 Choice of HRQOL Instruments 53  
     3.3 Establishment of Clear Objectives in HRQOL Assessments 53  
     3.4 Methods for HRQOL Assessment 55  
     3.5 HRQOL as the Primary End Point 57  
     3.6 Interpretation of HRQOL Results 58  
     3.7 Examples 58  
        3.7.1 HRQOL in Asthma 58  
        3.7.2 HRQOL in Seasonal Allergy Rhinitis 60  
        3.7,3 Symptom Relief for Late-Stage Cancers 61  
     3.8 Conclusion 62  
     Acknowledgment 62  
     References 62  
     Further Reading 65  
  4 Bandit Processes and Response-Adaptive Clinical Trials: The Art of Exploration Versus Exploitation 66  
     4.1 Introduction 66  
     4.2 Exploration Versus Exploitation with Complete Observations 67  
        4.2.1 The Model of Markov Decision Processes 68  
        4.2.2 The Bandit Processes Under the Bayesian Approach 68  
        4.2.3 The Response-Adaptive Clinical Trials 71  
     4.3 Exploration Versus Exploitation with Censored Observations 72  
     4.4 Conclusion 74  
     Acknowledgments. 75  
     References 75  
  5 Bayesian Dose-Finding Designs in Healthy Volunteers 77  
     5.1 Introduction 77  
     5.2 A Bayesian Decision-Theoretic Design 78  
     5.3 An Example of Dose Escalation in Healthy Volunteer Studies 80  
     5.4 Discussion 85  
     References 87  
  6 Bootstrap 88  
     6.1 Introduction 88  
     6.2 Plug-In Principle 90  
        6.2.1 How Useful is the Bootstrap Distribution? 90  
        6.2.2 Other Population Estimates 91  
        6.2.3 Other Sampling Procedures 91  
        6.2.4 Other Statistics 91  
     6.3 Monte Carlo Sampling—The "Second Bootstrap Principle" 92  
     6.4 Bias and Standard Error 92  
     6.5 Examples 93  
        6.5.1 Relative Risk 93  
        6.5.2 Linear Regression 94  
     6.6 Model Stability 98  
        6.6.1 Logistic Regression 101  
     6.7 Accuracy of Bootstrap Distributions 103  
        6.7.1 Systematic Errors in Bootstrap Distributions 108  
        6.7.2 Bootstrap Distributions Are Too Narrow 108  
     6.8 Bootstrap Confidence Intervals 109  
        6.8.1 t Intervals 109  
        6.8.2 Percentile Intervals 110  
        6.8.3 Bootstrap t 110  
        6.8.4 BCa Intervals 112  
        6.8.5 Bootstrap Tilting Intervals 113  
        6.8.6 Importance Sampling Implementation 113  
        6.8.7 Confidence Intervals for Mean Arsenic Concentration 115  
        6.8.8 Implications for Other Situations 116  
        6.8.9 Comparing Intervals 116  
     6.9 Hypothesis Testing 117  
     6.10 Planning Clinical Trials 118  
        6.10.1 "What If ' Analyses— Alternate Population Estimates 119  
     6.11 How Many Bootstrap Samples Are Needed 121  
        6.11.1 Assessing Monte Carlo Variation 124  
        6.11.2 Variance Reduction 124  
     6.12 Additional References 125  
     References 125  
  7 Conditional Power in Clinical Trial Monitoring 128  
     7.1 Introduction 128  
     7.2 Conditional Power 128  
     7.3 Weight-Averaged Conditional Power or Bayesian Predictive Power 131  
     7.4 Conditional Power of a Different Kind: Discordance Probability 132  
     7.5 Analysis of a Randomized Trial 133  
     7.6 Conditional Power: Pros and Cons 134  
     References 135  
  8 Cost-Effectiveness Analysis 137  
     8.1 Introduction 137  
     8.2 Definitions and Design Issues 137  
        8.2.1 The Various Types of Analysis used in Economic Evaluation 137  
        8.2.2 The Economic Perspective 138  
        8.2.3 Choice of Comparator 138  
        8.2.4 Setting and Timescale 139  
        8.2.5 Sample Size 139  
        8.2.6 Economic Analysis Plans 139  
     8.3 Cost and Effectiveness Data 140  
        8.3.1 The Measurement of Costs 140  
        8.3.2 The Measurement of Effectiveness 140  
        8.3.3 Quality-of-Life Scales 141  
     8.4 The Analysis of Costs and Outcomes 141  
        8.4.1 The Comparison of Costs 141  
        8.4.2 The Incremental Cost- Effectiveness Ratio 141  
        8.4.3 The Incremental Net Benefit 142  
        8.4.4 The Cost-Effectiveness Acceptability Curve 144  
     8.5 Robustness and Generalizability in Cost-Effectiveness Analysis 146  
        8.5.1 Missing Data 146  
        8.5.2 Censored Data 146  
        8.5.3 Treatment Switches 146  
        8.5.4 Multicenter Trials and Pooling 147  
        8.5.5 Classic Sensitivity Analysis 147  
        8.5.6 Regression Models 147  
        8.5.7 Markov Models to Extrapolate Over Time 148  
        8.5.8 Examples of Modeling and Sensitivity Analysis 148  
     References 149  
     Further Reading 151  
  9 Cox-Type Proportional Hazards Models 152  
     9.1 Introduction 152  
     9.2 Cox Model for Univariate Failure Time Data Analysis 152  
        9.2.1 Hazard Rate Function 152  
        9.2.2 Model and Parameter Interpretation 153  
        9.2.3 Parameter Estimation and Inference 153  
        9.2.4 Stratified Population 154  
     9.3 Marginal Models for Multivariate Failure Time Data Analysis 155  
        9.3.1 Multiple Event Data 155  
        9.3.2 Clustered Failure Time Data 156  
     9.4 Practical Issues in Using the Cox Model 157  
        9.4.1 Tied Data 157  
        9.4.2 Time-Dependent Covariates 158  
        9.4.3 Censoring Mechanism 159  
        9.4.4 Assessing the Proportional Hazards Assumption 159  
        9.4.5 Sample Size Calculation for Time-to-Event Data 160  
     9.5 Examples 162  
        9.5.1 Application to Lung Study 162  
        9.5.2 Application to Framingham Heart Study 163  
        9.5.3 Application to Diabetes Study 163  
     9.6 Extensions 167  
     9.7 Softwares and Codes 167  
        9.7.1 R Code for the Sample Size Calculation 167  
        9.7.2 SAS and R Codes for Fitting Proportional Hazards Models 169  
     References 170  
     Further Reading 171  
  10 Empirical Likelihood Methods in Clinical Experiments 172  
     10.1 Introduction 172  
     10.2 Classical EL: Several Ingredients for Theoretical Evaluations 178  
     10.3 The Relationship Between Empirical Likelihood and Bootstrap Methodologies 180  
     10.4 Bayes Methods Based on Empirical Likelihoods 182  
     10.5 Mixtures of Likelihoods 182  
     10.6 An Example: ROC Curve Analyses Based on Empirical Likelihoods 183  
     10.7 Applications of Empirical Likelihood Methodology in Clinical Trials or Other Data Analyses 184  
     10.8 Concluding Remarks 184  
     Appendix 187  
     References 188  
  11 Frailty Models 192  
     11.1 Introduction 192  
     11.2 Univariate Frailty Models 193  
     11.3 Multivariate Frailty Models 196  
        11.3.1 Shared Frailty Model 196  
        11.3.2 Correlated Frailty Model 197  
     11.4 Software 197  
     References 198  
  12 Futility Analysis 200  
     12.1 Introduction 200  
     12.2 Common Statistical Approaches to Futility Monitoring 201  
        12.2.1 Statistical Background 201  
        12.2.2 Conditional Power and Stochastic Curtailment 201  
        12.2.3 Group Sequential Formulation of Futility Boundary 203  
        12.2.4 Other Statistical Approaches to Constructing Futility Boundaries 203  
     12.3 Examples 204  
        12.3.1 Optimal Duration of Tamoxifen in Breast Cancer 204  
        12.3.2 A Randomized Study of Antenatal Corticosteroids 205  
     12.4 Discussion 206  
     References 210  
     Further Reading 212  
  13 Imaging Science in Medicine I: Overview 213  
     13.1 Introduction 213  
     13.2 Advances in Medical Imaging 215  
     13.3 Evolutionary Developments in Imaging 216  
        13.3.1 Molecular Medicine 217  
        13.3.2 Human Vision 218  
        13.3.3 Image Quality 222  
        13.3.4 Image Display/ Processing 232  
     13.4 Conclusion 237  
     References 238  
  14 Imaging Science in Medicine, II: Basics of X-Ray Imaging 239  
     14.1 Introduction to Medical Imaging: Different Ways of Creating Visible Contrast Among Tissues 239  
        14.1.1 "On a New Kind of Ray" 240  
        14.1.2 Contrast from Differential Interaction of Imaging Probes with Tissues 241  
        14.1.3 Different Probes Interact with Different Tissues in Different Ways, Yielding Different Kinds of Contrast Information 242  
        14.1.4 X Rays, Light, and Other Forms of Electromagnetic Radiation 243  
        14.1.5 The Principal Concern in Medicine Is Usually "Good Enough" Contrast 246  
     14.2 What the Body Does to the X-Ray Beam: Subject Contrast From Differential Attenuation of the X-Ray Beam by Various Tissues 248  
        14.2.1 X-Ray Film of a Cracked Phalange 248  
        14.2.2 Generating the Beam at the Anode/Target of the X-Ray Tube 249  
        14.2.3 Exponential Attenuation of a Narrow Monochromatic Beam by a Homogeneous Medium 253  
        14.2.4 Both of the Two Principal Mechanisms for the Interaction of X-Ray Photons with Atomic Electrons, Photoelectric Absorption (PA) and Compton Scatter (CS), are Important, and for Different Reasons 255  
        14.2.5 What the Body Does to a Flat X-Ray Beam: Subject Contrast from Differential Attenuation 259  
     14.3 What the X-Ray Beam Does to the Body: Known Medical Benefits Versus Possible Radiogenic Risks 261  
        14.3.1 Dose of Ionizing Radiation, in Gray 262  
        14.3.2 Radiogenic Risk Comes from Damage to DNA 264  
        14.3.3 Deterministic and Teratogenic Radiation Health Effects 266  
        14.3.4 Stochastic Effects and the Ubiquitous Linear No-Threshold Dose- Risk Assumption 266  
        14.3.5 In Medicine, 1 Sievert = 1 Gray 267  
        14.3.6 Effective Dose Is Expressed in Sieverts, Even in Medicine 268  
        14.3.7 Special Considerations for Children 269  
        14.3.8 The Radiation Safety Component of the Quality Assurance Program 271  
        14.3.9 Dose to the Image Receptor 274  
     14.4 Capturing the Visual Image: Analog (20th Century) X-Ray Image Receptors 274  
        14.4.1 Screen-Film Radiography: What the Primary X-Ray Image Does to the Image Receptor 274  
        14.4.2 Fluoroscopy with an Image Intensifier Tube and Electronic Optical Camera 279  
        14.4.3 Image Quality 279  
        14.4.4 The Image Quality Component of the QA Program 286  
  15 Imaging Science in Medicine, III: Digital (21st Century) X-Ray Imaging 290  
     15.1 The Computer in Medical Imaging 290  
        15.1.1 A Bit About Bytes, etc. 291  
        15.1.2 Digital Images 292  
        15.1.3 Digital Image Processing: Enhancing Tissue Contrast, Signal-to- Noise, Edge Sharpness, etc. 297  
        15.1.4 Picture Archiving and Communication Systems 300  
        15.1.5 Image Analysis and Interpretation: Computer-Assisted Detection 302  
        15.1.6 Computer and Computer-Network Security 303  
        15.1.7 Liquid Crystal and Other Digital Displays 304  
        15.1.8 The Joy of Digital 304  
     15.2 The Digital Planar X-Ray Modalities: Computed Radiography and Digital Radiography and Fluoroscopy 305  
        15.2.1 Computed Radiography 307  
        15.2.2 Digital Radiography with an Active Matrix Flat-Panel Imager 308  
        15.3 Digital Fluoroscopy and Digital Subtraction Angiography 313  
     15.4 Digital Tomosynthesis: Planar Imaging in Three Dimensions 316  
     15.5 Computed Tomography: Superior Contrast in Three-Dimensional X-Ray Attenuation Maps 318  
        15.5.1 Raw Data: The Ray- Projection/Ray-Sum Measures the Total Attenuation Along a Geometric Ray 319  
        15.5.2 Filtered Back- Projection Reconstruction 323  
        15.5.3 Generations of CT Devices 327  
        15.5.4 CT Dose and QA 334  
  16 Intention-to-Treat Analysis 339  
     16.1 Introduction 339  
     16.2 Missing Information 339  
        16.2.1 Background 339  
        16.2.2 Ignorable Missing Data 340  
        16.2.3 Conditionally Ignorable Missing Data 341  
        16.2.4 Potential for Bias 341  
     16.3 The Intention-to-Treat Design 342  
        16.3.1 Withdrawal from Treatment Versus Withdrawal from Follow-Up 343  
        16.3.2 Investigator and Subject Training/ Education 343  
        16.3.3 The Intent-to-Treat Analysis 344  
        16.3.4 Intent-to-Treat Subset Analysis 344  
        16.3.5 LOCF Analysis 344  
        16.3.6 Structurally Missing Data 345  
        16.3.7 Worst Rank Analyses 345  
     16.4 Efficiency of the Intent-to- Treat Analysis 345  
        16.4.1 Power 345  
        16.4.2 Sample Size 346  
     16.5 Compliance-Adjusted Analyses 346  
     16.6 Conclusion 346  
     References 347  
     Further Reading 347  
  17 Interim Analyses 349  
     17.1 Introduction 349  
     17.2 Opportunities and Dangers of Interim Analyses 350  
     17.3 The Development of Techniques for Conducting Interim Analyses 351  
     17.4 Methodology for Interim Analyses 351  
        17.4.1 The Treatment Effect Parameter 352  
        17.4.2 Test Statistics for Use at Interim Analyses 352  
        17.4.3 Stopping Rules at Interim Analyses 353  
        17.4.4 Analysis Following a Sequential Trial 354  
     17.5 An Example: Statistics for Lamivudine 354  
     17.6 Interim Analyses in Practice 355  
     17.7 Conclusions 357  
     References 357  
  18 Interrater Reliability 360  
     18.1 Definition 360  
     18.2 The Importance of Reliability in Clinical Trials 360  
     18.3 How Large a Reliability Coefficient Is Large Enough? 361  
     18.4 Design and Analysis of Reliability Studies 361  
     18.5 Estimate of the Reliability Coefficient—Parametric 362  
     18.6 Estimation of the Reliability Coefficient—Nonparametric 362  
     18.7 Estimation of the Reliability Coefficient—Binary 363  
     18.8 Estimation of the Reliability Coefficient—Categorical 363  
     18.9 Strategies to Increase Reliability (Spearman–Brown Projection) 363  
     18.10 Other Types of Reliabilities 364  
     References 364  
  19 Intrarater Reliability 366  
     19.1 Introduction 366  
     19.2 Intrarater Reliability for Continuous Scores 366  
        19.2.1 Defining Intrarater Reliability 367  
        19.2.2 Statistical Inference 368  
        19.2.3 Optimizing the Design of the Intrarater Reliability Study 370  
     19.3 Nominal Scale Score Data 374  
        19.3.1 Intrarater Reliability: Single Rater and Two Replications 375  
        19.3.2 Intrarater Reliability: Single Rater and Multiple Replications 377  
        19.3.3 Statistical Inference 378  
     19.4 Ordinal and Interval Score Data 379  
     19.5 Concluding Remarks 380  
     References 381  
     Further Reading 382  
  20 Kaplan–Meier Plot 383  
     20.1 Introduction 383  
     20.2 Estimation of Survival Function 384  
        20.2.1 An Example 385  
        20.2.2 Practical Notes 385  
        20.2.3 Median Survival Time 388  
        20.2.4 More Practical Notes 388  
     20.3 Additional Topics 389  
     References 390  
  21 Logistic Regression 391  
     21.1 Introduction 391  
     21.2 Fitting the Logistic Regression Model 392  
     21.3 The Multiple Logistic Regression Model 394  
     21.4 Fitting the Multiple Logistic Regression Model 395  
     21.5 Example 395  
     21.6 Testing for the Significance of the Model 397  
     21.7 Interpretation of the Coefficients of the Logistic Regression Model 399  
     21.8 Dichotomous Independent Variable 399  
     21.9 Polytomous Independent Variable 401  
     21.10 Continuous Independent Variable 401  
     21.11 Multivariate Case 403  
     References 405  
  22 Metadata 406  
     22.1 Introduction 406  
     22.2 History/Background 406  
        22.2.1 A Metadata Example 406  
        22.2.2 Geospatial Data 407  
        22.2.3 Research Data and Statistical Software 408  
        22.2.4 Electronic Regulatory Submission 408  
     22.3 Data Set Metadata 409  
        22.3.1 Data Set-Level Metadata 409  
        22.3.2 Variable-Level Metadata 410  
        22.3.3 Value-Level Metadata 412  
        22.3.4 Item-Level Metadata 412  
     22.4 Analysis Results Metadata 414  
     22.5 Regulatory Submission Metadata 415  
        22.5.1 ICH Electronic Common Technical Document 415  
        22.5.2 FDA Guidance on eCTD Submissions 415  
     References 416  
  23 Microarray 418  
     23.1 Introduction 418  
        23.1.1 MammaPrint 419  
     23.2 What is a Microarray? 419  
        23.2.1 Types of Expression Microarrays 420  
        23.2.2 Microarrays Can Generate Reproducible Results 421  
     23.3 Other Array Technologies 421  
        23.3.1 Genotyping Using Expression Microarrays 421  
        23.3.2 Splicing Arrays 422  
        23.3.3 Exon Array 422  
        23.3.4 Tiling Array— Including Methylation Arrays 423  
        23.3.5 SNP Chip 423  
        23.3.6 ChlP-on-Chip 423  
        23.3.7 Protein Arrays 424  
     23.4 Define Objectives of the Study 424  
     23.5 Experimental Design for Microarray 425  
        23.5.1 Avoidance of Experimental Artifacts 425  
        23.5.2 Randomization, Blocking, and Blinding 425  
        23.5.3 Replication 425  
        23.5.4 Practice, Practice, Practice 426  
        23.5.5 Strict Experimental Practices 426  
     23.6 Data Extraction 427  
        23.6.1 Image Processing from cDNA and Long Oligo Arrays 427  
        23.6.2 Image Analysis of Affymetrix GeneChip Microarrays 427  
        23.6.3 Normalization of DNA Data 428  
     23.7 Microarray Informatics 428  
     23.8 Statistical Analysis 428  
        23.8.1 Class Prediction Analysis 428  
        23.8.2 Class Discovery Analysis 429  
        23.8.3 Class Differentiation Analysis 429  
     23.9 Annotation 430  
     23.10 Pathway, GO, and Class-Level Analysis Tools 430  
     23.11 Validation of Microarray Experiments 431  
     23.12 Conclusions 431  
     References 432  
  24 Multi-Armed Bandits, Gittins Index, and Its Calculation 442  
     24.1 Introduction 442  
     24.2 Mathematical Formulation of Multi-Armed Bandits 442  
        24.2.1 An Example 443  
        24.2.2 Solution Concept and the Gittins Index 444  
        24.2.3 Salient Features of the Model 444  
     24.3 Off-Line Algorithms for Computing Gittins Index 445  
        24.3.1 Largest-Remaining- Index Algorithm (Varaiya, Walrand, and Buyukkoc) 446  
        24.3.2 State-Elimination Algorithm (Sonin) 447  
        24.3.3 Triangularization Algorithm (Denardo, Park, and Rothblum) 449  
        24.3.4 Fast-Pivoting Algorithm (Niño-Mora) 451  
        24.3.5 An Efficient Method to Compute Gittins Index of Multiple Processes 453  
     24.4 On-Line Algorithms for Computing Gittins Index 454  
        24.4.1 Restart Formulation (Katehakis and Veinott) 455  
        24.4.2 Linear Programming Formulation (Chen and Katehakis) 455  
     24.5 Computing Gittins Index for the Bernoulli Sampling Process 456  
        24.5.1 Dynamic Programming Formulation (Gittins) 457  
        24.5.2 Restart Formulation (Katehakis and Derman) 457  
        24.5.3 Closed-Form Approximations 458  
        24.5.4 Qualitative Properties of Gittins Index 458  
     24.6 Conclusion 459  
     References 459  
  25 Multiple Comparisons 462  
     25.1 Introduction 462  
     25.2 Strong and Weak Control of the FWE 462  
     25.3 Criteria for Deciding Whether Adjustment is Necessary 463  
     25.4 Implicit Multiplicity: Two-Tailed Testing 464  
     25.5 Specific Multiple Comparison Procedures 465  
        25.5.1 Multiple Arms 465  
        25.5.2 Multiple End Points 466  
        25.5.3 Subgroup Analyses 468  
        25.5.4 Interim Monitoring 469  
     References 470  
  26 Multiple Evaluators 472  
     26.1 Introduction 472  
     26.2 Agreement for Continuous Data 473  
        26.2.1 Hypothesis Testing Approach 473  
        26.2.2 An Index Approach 473  
        26.2.3 An Interval Approach 475  
     26.3 Agreement for Categorical Data 475  
        26.3.1 Measuring Agreement between Two Evaluators 476  
        26.3.2 Extensions to Kappa and Other Approaches for Modeling Patterns of Agreement 477  
        26.3.3 Issues with Kappa 478  
     26.4 Summary and Discussion 479  
     Acknowledgments 479  
     References 479  
  27 Noncompartmental Analysis 483  
     27.1 Introduction 483  
     27.2 Terminology 484  
        27.2.1 Compartment 484  
        27.2.2 Parameter 484  
        27.2.3 Fixed Constant 484  
        27.2.4 Statistic 484  
        27.2.5 Comment 484  
     27.3 Objectives and Features of Noncompartmental Analysis 485  
        27.3.1 Advanced Noncompartmental Techniques 485  
     27.4 Comparison of Noncompartmental and Compartmental Models 486  
     27.5 Assumptions of NCA and Its Reported Descriptive Statistics 486  
        27.5.1 Assumption 1: Routes and Kinetics of Drug Absorption 487  
        27.5.2 Assumptions 2 to 4: Drug Distribution 487  
        27.5.3 Assumption 5: Routes of Drug Elimination 489  
        27.5.4 Assumption 6: Kinetics of Drug Elimination 489  
        27.5.5 Assumptions 7 and 8: Sampling Times and Monoexponential Decline 489  
        27.5.6 Assumption 9: Time Invariance of Disposition Parameters 490  
        27.5.7 Assumptions of Subsequent Descriptive Statistics 490  
     27.6 Calculation Formulas for NCA 490  
        27.6.1 NCA of Plasma or Serum Concentrations by Numerical Integration 491  
        27.6.2 NCA of Plasma or Serum Concentrations by Curve Fitting 496  
        27.6.3 NCA with Plasma or Serum Concentrations and Amounts in Urine 497  
        27.6.4 Superposition Methods and Deconvolution 497  
     27.7 Guidelines for Performance of NCA Based on Numerical Integration 498  
        27.7.1 How to Select Concentration Data Points for Estimation of Terminal Half-Life 498  
        27.7.2 How to Handle Samples Below the Quantification Limit 500  
        27.7.3 NCA for Sparse Concentration-Time Data 501  
        27.7.4 Reporting the Results of an NCA 501  
        27.7.5 How to Design a Clinical Trial That Is to Be Analyzed by NCA 502  
     27.8 Conclusions and Perspectives 503  
     Acknowledgments 503  
     References 503  
     Further Reading 508  
  28 Nonparametric ROC Analysis for Diagnostic Trials 509  
     28.1 Introduction 509  
     28.2 Different Aspects of Study Design 510  
     28.3 Nonparametric Models and Hypotheses 512  
     28.4 Point Estimator 513  
     28.5 Asymptotic Distribution and Variance Estimator 514  
     28.6 Derivation of the Confidence Interval 516  
     28.7 Statistical Tests 516  
     28.8 Adaptations for Cluster Data 516  
     28.9 Results of a Diagnostic Study 517  
     28.10 Summary and Final Remarks 520  
     Acknowledgments. 520  
     References 520  
  29 Optimal Biological Dose for Molecularly Targeted Therapies 522  
     29.1 Introduction 522  
     29.2 Phase I Dose-Finding Designs for Cytotoxic Agents 523  
     29.3 Phase I Dose-Finding Designs for Molecularly Targeted Agents 523  
        29.3.1 Dynamic De-escalating Designs 524  
        29.3.2 Dose Determination through Simultaneous Investigation of Efficacy and Toxicity 525  
        29.3.3 Individualized Maximum Repeatable Dose 526  
        29.3.4 Proportion Designs and Slope Designs 527  
        29.3.5 Generalized Proportion Designs 527  
     29.4 Discussion 528  
     References 529  
     Further Reading 531  
  30 Over- and Underdispersion Models 532  
     30.1 Introduction 532  
     30.2 Count Dispersion Models 534  
        30.2.1 Mixed Poisson 534  
        30.2.2 Compound Poisson 535  
        30.2.3 Weighted Poisson 536  
        30.2.4 Lagrangian Poisson 538  
        30.2.5 Semiparametric Poisson 539  
     30.3 Count Explanatory Models 540  
        30.3.1 Generalized Linear Models 541  
        30.3.2 Count Time Series Models 542  
        30.3.3 Nonparametric Models 544  
     30.4 Summary and Final Remarks 545  
     References 546  
  31 Permutation Tests in Clinical Trials 553  
     31.1 Randomization Inference—Introduction 553  
     31.2 Permutation Tests—How They Work 554  
     31.3 Normal Approximation to Permutation Tests 557  
     31.4 Analyze as You Randomize 558  
     31.5 Interpretation of Permutation Analysis Results 559  
     31.6 Summary 560  
     References 560  
  32 Pharmacoepidemiology, Overview 562  
     32.1 Introduction 562  
     32.2 The Case–Crossover Design 563  
     32.3 Confounding Bias 565  
        32.3.1 Missing Confounder Data 566  
        32.3.2 The Case–Time– Control Design 567  
     32.4 Risk Functions Over Time 569  
     32.5 Probabilistic Approach for Causality Assessment 571  
     32.6 Methods Based on Prescription Data 572  
     Acknowledgments 573  
     References 574  
  33 Population Pharmacokinetic and Pharmacodynamic Methods 577  
     33.1 Introduction 577  
     33.2 Terminology 578  
        33.2.1 Variable 578  
        33.2.2 Parameter 578  
        33.2.3 Variability 578  
        33.2.4 Uncertainty 578  
        33.2.5 Covariate (also Called Covariable) 579  
        33.2.6 Covariance 579  
        33.2.7 Mixed Effects Model 579  
        33.2.8 Subject Variability 579  
     33.3 Fixed Effects Models 579  
        33.3.1 Input-Output Models 579  
        33.3.2 Group Models 580  
     33.4 Random Effects Models 581  
        33.4.1 Parameter Variability Model 581  
        33.4.2 Residual Error Model 582  
     33.5 Model Building and Parameter Estimation 582  
        33.5.1 Hypothesis Testing 583  
        33.5.2 Objective Function 584  
        33.5.3 Bootstrap 584  
        33.5.4 Bayesian Estimation 585  
        33.5.5 Mixture Models 587  
     33.6 Software 587  
        33.6.1 NONMEM 588  
        33.6.2 Other Programs 588  
     33.7 Model Evaluation 588  
        33.7.1 Residuals 589  
        33.7.2 Predictive Checks 589  
        33.7.3 Prediction Discrepancy 589  
        33.7.4 Cross-Validation and External Validation 591  
     33.8 Stochastic Simulation 591  
     33.9 Experimental Design 591  
     33.10 Applications 592  
        33.10.1 Drug Development 592  
        33.10.2 Regulatory Science 592  
        33.10.3 Human and Disease Biology 592  
     Acknowledgment 593  
     References 593  
     Further Reading 594  
  34 Proportions: Inferences and Comparisons 596  
     34.1 Introduction 596  
     34.2 One-Sample Case 597  
        34.2.1 Point Estimation 597  
        34.2.2 Interval Estimation 597  
        34.2.3 Hypothesis Testing 601  
        34.2.4 Power and Sample Size Determination 603  
        34.2.5 One-Sample Summary 604  
     34.3 Two Independent Samples 604  
        34.3.1 Asymptotic Methods 605  
        34.3.2 Exact Methods 607  
        34.3.3 Bayesian Methods 610  
        34.3.4 Study Design and Power 611  
        34.3.5 Noninferiority and Equivalence Tests 612  
        34.3.6 Two-Sample Summary 613  
     34.4 Note on Software 614  
     References 615  
  35 Publication Bias 621  
     35.1 Publication Bias and the Validity of Research Reviews 621  
     35.2 Research on Publication Bias 622  
        35.2.1 Direct Evidence of Publication Bias 622  
        35.2.2 Indirect Evidence of Publication Bias 623  
        35.2.3 Clinical Significance of the Evidence 623  
     35.3 Data Suppression Mechanisms Related to Publication Bias 623  
     35.4 Prevention of Publication Bias 624  
        35.4.1 Trials Registries 625  
        35.4.2 Prospective Meta-Analysis 625  
        35.4.3 Thorough Literature Search 625  
     35.5 Assessment of Publication Bias 625  
        35.5.1 File Drawer Analysis (Failsafe N Approach) 626  
        35.5.2 Funnel Plots 626  
        35.5.3 Statistical Tests 627  
        35.5.4 Selection Models 629  
        35.5.5 Comparing the Results of the Different Methods 630  
     35.6 Impact of Publication Bias 631  
     References 631  
     Further Reading 633  
  36 Quality of Life 634  
     36.1 Background 634  
        36.1.1 Health-Related Quality of Life 634  
     36.2 Measuring Health-Related Quality of Life 635  
        36.2.1 Health Status Versus Patient Preferences 635  
        36.2.2 Objective Versus Subjective 637  
        36.2.3 Generic Versus Disease-Specific Instruments 637  
        36.2.4 Global Index Versus Profile of Domain- Specific Measures 637  
        36.2.5 Response Format 638  
        36.2.6 Period of Recall 638  
        36.2.7 Scoring 639  
     36.3 Development and Validation of HRQoL Measures 639  
        36.3.1 Development 639  
        36.3.2 Validation 639  
        36.3.3 Translation / Cross- Cultural Validation 641  
        36.3.4 Item Banking and Computer-Adaptive Testing 641  
     36.4 Use in Research Studies 641  
        36.4.1 Instrument Selection 641  
        36.4.2 Multiple End Points 642  
        36.4.3 Missing Data 642  
     36.5 Interpretation/Clinical Significance 643  
        36.5.1 Distributional Methods 643  
        36.5.2 Anchor-Based Methods 643  
     36.6 Conclusions 644  
     References 645  
  37 Relative Risk Modeling 648  
     37.1 Introduction 648  
     37.2 Why Model Relative Risks? 648  
     37.3 Data Structures and Likelihoods 649  
     37.4 Approaches to Model Specification 650  
        37.4.1 Empiric Models 650  
        37.4.2 Models for Extended Exposure Histories 653  
        37.4.3 Nonparametric Models 654  
     37.5 Mechanistic Models 655  
     References 656  
  38 Sample Size Considerations for Morbidity/Mortality Trials 659  
     38.1 Introduction 659  
     38.2 General Framework for Sample Size Calculation 659  
     38.3 Choice of Test Statistics 660  
        38.3.1 Parametric Tests 660  
        38.3.2 Nonparametric Tests 661  
     38.4 Adjustment of Treatment Effect 662  
        38.4.1 The Discrete Nonstationary Markov Process Model 663  
        38.4.2 Implementation 664  
        38.4.3 Illustration 665  
     38.5 Informative Noncompliance 665  
     References 666  
  39 Sample Size for Comparing Means 668  
     39.1 Introduction 668  
     39.2 One-Sample Design 669  
        39.2.1 Test for Equality 669  
        39.2.2 Test for Noninferiority / Superiority 669  
        39.2.3 Test for Equivalence 670  
        39.2.4 An Example 670  
        39.2.4 An Example 670  
     39.3 Two-Sample Parallel Design 671  
        39.3.1 Test for Equality 671  
        39.3.2 Test for Noninferiority / Superiority 671  
        39.3.3 Test for Equivalence 672  
        39.3.4 An Example 672  
     39.4 Two-Sample Crossover Design 672  
        39.4.1 Test for Equality 673  
        39.4.2 Test for Noninferiority / Superiority 673  
        39.4.3 Test for Equivalence 674  
        39.4.4 An Example 674  
     39.5 Multiple-Sample One-Way ANOVA 674  
        39.5.1 Pairwise Comparison 674  
        39.5.2 Simultaneous Comparison 675  
        39.5.3 An Example 675  
     39.6 Multiple-Sample Williams Design 676  
        39.6.1 Test for Equality 676  
        39.6.2 Test for Noninferiority / Superiority 677  
        39.6.3 Test for Equivalence 677  
        39.6.4 An Example 677  
     39.7 Discussion 677  
     References 678  
  40 Sample Size for Comparing Proportions 679  
     40.1 Introduction 679  
     40.2 One-Sample Design 680  
        40.2.1 Test for Equality 680  
        40.2.2 Test for Non-Inferiority / Superiority 680  
        40,2.3 Test for Equivalence 681  
        40.2.4 An Example 681  
     40.3 Two-Sample Parallel Design 681  
        40.3.1 Test for Equality 682  
        40.3.2 Test for Non-Inferiority / Superiority 682  
        40.3.3 Test for Equivalence 682  
        40.3.4 An Example 683  
     40.4 Two-Sample Crossover Design 683  
        40.4.1 Test for Equality 684  
        40.4.2 Test for Non-Inferiority / Superiority 684  
        40.4.3 Test for Equivalence 685  
        40.4.4 An Example 685  
     40.5 Relative Risk—Parallel Design 685  
        40.5.1 Test for Equality 686  
        40.5.2 Test for Non-Inferiority / Superiority 686  
        40.5.3 Test for Equivalence 686  
        40.5.4 An Example 687  
     40.6 Relative Risk—Crossover Design 687  
        40.6.1 Test for Equality 688  
        40.6.2 Test for Non-Inferiority / Superiority 688  
        40.6.3 Test for Equivalence 688  
        40.6.4 An Example 689  
     40.7 Discussion 689  
     References 689  
  41 Sample Size for Comparing Time-to-Event Data 690  
     41.1 Introduction 690  
     41.2 Exponential Model 690  
        41.2.1 Test for Equality 691  
        41.2.2 Test for Noninferiority / Superiority 692  
        41.2.3 Test for Equivalence 692  
        41.2.4 An Example 693  
     41.3 Cox's Proportional Hazards Model 693  
        41.3.1 Test for Equality 693  
        41.3.2 Test for Noninferiority / Superiority 694  
        41.3.3 Test for Equivalence 694  
        41.3.4 An Example 695  
     41.4 Log-Rank Test 695  
        41.4.1 An Example 696  
     41.5 Discussion 696  
     References 696  
  42 Sample Size for Comparing Variabilities 698  
     42.1 Introduction 698  
     42.2 Comparing Intrasubject Variabilities 698  
        42.2.1 Parallel Design with Replicates 699  
        42.2.2 Replicated Crossover Design 700  
     42.3 Comparing Intersubject Variabilities 702  
        42.3.1 Parallel Design with Replicates 703  
        42.3.2 Replicated Crossover Design 704  
     42.4 Comparing Total Variabilities 706  
        42.4.1 Parallel Designs Without Replicates 706  
        42.4.2 Parallel Design with Replicates 708  
        42.4.3 The Standard 2 x 2 Crossover Design 710  
        42.4.4 Replicated 2 x 2m Crossover Design 711  
     42.5 Discussion 713  
     References 713  
  43 Screening, Models of 715  
     43.1 Introduction 715  
     43.2 What is Screening? 715  
     43.3 Why Use Modeling? 717  
     43.4 Characteristics of Screening Models 718  
        43.4.1 Types of Model 718  
        43.4.2 Markov Framework for Modeling 718  
     43.5 A Simple Disease and Screening Model 719  
     43.6 Analytic Models for Cancer 721  
     43.7 Simulation Models for Cancer 730  
     43.8 Model Fitting and Validation 734  
        43.8.1 An Example of Model Fitting 737  
        43.8.2 An Application of the Model to Breast Cancer Screening 739  
        43.8.3 A Comparison of Two Models for Breast Cancer 739  
     43.9 Models for Other Diseases 741  
     43.10 Current State and Future Directions 742  
     References 743  
  44 Screening Trials 747  
     44.1 Introduction 747  
     44.2 Design Issues 747  
     44.3 Sample Size 748  
     44.4 Study Designs 749  
        44.4.1 Classic Two-Arm Trial That Addresses a Single Question 749  
        44.4.2 Designs for Investigating More than One Question in the Same Study 749  
     44.5 Analysis 751  
        44.5.1 Primary Analysis 751  
        44.5.2 Overall Mortality Analysis 751  
        44.5.3 Limited Mortality Analysis 752  
        44.5.4 Comparability 752  
        44.5.5 Secondary Analyses 753  
     44.6 Trial Monitoring 754  
     References 754  
  45 Secondary Efficacy End Points 757  
     45.1 Introduction 757  
     45.2 Literature Review 760  
     45.3 Review of Methodology for Multiplicity Adjustment and Gatekeeping Strategies for Secondary End Points 762  
     45.4 Summary 764  
     References 764  
     Further Reading 765  
  46 Sensitivity, Specificity, and Receiver Operator Characteristic (ROC) Methods 766  
     46.1 Evaluating a Single Binary Test Against a Binary Criterion 766  
     46.2 Evaluation of a Single Binary Test: ROC Methods 769  
     46.3 Evaluation of a Test Response Measured on an Ordinal Scale: ROC Methods 771  
     46.4 Evaluation of Multiple Different Tests 773  
        46.4.1 A Family of Tests 773  
     46.5 The Optimal Sequence of Tests 773  
     46.6 Sampling and Measurement Issues 775  
        46.6.1 Naturalistic Sampling 775  
        46.6.2 Prospective or Two- Stage Sampling 775  
        46,6.3 Retrospective (Case- Control) Sampling 776  
     46.7 Summary 776  
     References 777  
  47 Software for Genetics/Genomics 778  
     47.1 Introduction 778  
     47.2 Data Management 778  
        47.2.1 Data Storage and Retrieval 780  
        47.2.2 Data Visualization 780  
        47.2.3 Data Processors 780  
        47.2.4 Error Detection for Family and Genotype Data 787  
        47.2.5 Error Detection for Genetic Maps 788  
     47.3 Genetic Analysis 788  
        47.3.1 Summary Statistics 788  
        47.3.2 Familial Aggregation, Commingling, and Segregation Analysis 789  
        47.3.3 Linkage Analysis 789  
        47.3.4 Association Analysis 790  
        47.3.5 Linkage Disequilibrium and Transmission Disequilibrium Tests 791  
        47.3.6 Admixture Mapping 792  
        47.3.7 Haplotype Analysis 793  
        47.3.8 Software Suites 794  
     47.4 Genomic Analysis 794  
     47.5 Other 796  
        47.5.1 Power Calculations/ Simulation 796  
        47.5.2 Meta-analysis 796  
     References 796  
     Further Reading 802  
  48 Stability Study Designs 804  
     48.1 Introduction 804  
     48.2 Stability Study Designs 805  
        48.2.1 Full Design 805  
        48.2.2 Reduced Design 806  
        48.2.3 Other Fractional Factorial Designs 808  
     48.3 Criteria for Design Comparison 808  
     48.4 Stability Protocol 814  
     48.5 Basic Design Considerations 814  
        48.5.1 Impact of Design Factors on Shelf Life Estimation 814  
        48.5.2 Sample Size and Sampling Considerations 815  
        48.5.3 Other Issues 815  
     48.6 Conclusions 816  
     Acknowledgments 816  
     References 816  
  49 Subgroup Analysis 819  
     49.1 Introduction 819  
     49.2 The Dilemma of Subgroup Analysis 819  
     49.3 Planned Versus Unplanned Subgroup Analysis 820  
     49.4 Frequentist Methods 821  
        49.4.1 Significance Testing Within Subgroups 821  
     49.5 Testing Treatment by Subgroup Interactions 822  
     49.6 Subgroup Analyses in Positive Clinical Trials 823  
     49.7 Confidence Intervals for Treatment Effects within Subgroups 824  
     49.8 Bayesian Methods 825  
     References 826  
  50 Survival Analysis, Overview 828  
     50.1 Introduction 828  
     50.2 History 828  
        50.2.1 The Prehistory of Survival Analysis in Demography and Actuarial Science 828  
        50.2.2 The "Actuarial" Life Table and the Kaplan– Meier Estimator 829  
        50.2.3 Parametric Survival Models 830  
        50.2.4 Multistate Models 830  
     50.3 Survival Analysis Concepts 830  
     50.4 Nonparametric Estimation and Testing 831  
     50.5 Parametric Inference 833  
     50.6 Comparison with Expected Survival 833  
     50.7 The Cox Regression Model 833  
     50.8 Other Regression Models for Survival Data 835  
     50.9 Multistate Models 835  
     50.10 Other Kinds of Incomplete Observation 837  
     50.11 Multivariate Survival Analysis 837  
     50.12 Concluding Remarks 837  
     References 838  
  51 The FDA and Regulatory Issues 841  
     51.1 Caveat 841  
     51.2 Introduction 841  
     51.3 Chronology of Drug Regulation in the United States 842  
     51.4 FDA Basic Structure 846  
     51.5 IND Application Process 846  
        51.5.1 Types of IND 847  
        51.5.2 Parallel Track 848  
        51.5.3 Resources for Preparation of IND Applications 848  
        51.5.4 The First Step, the Phase I IND Application 849  
        51.5.5 Meetings with the FDA (http://www. fda. gov / cder / guidance / 2125fnl.pdf) 854  
     51.6 Drug Development and Approval Time Frame 855  
        51.6.1 Accelerated Development /Review 855  
        51.6.2 Fast Track Programs 856  
        51.6.3 Safety of Clinical Trials 856  
     51.7 NDA Process 857  
        51.7.1 Review Priority Classification 859  
        51.7.2 P—Priority Review 859  
        51.7.3 S—Standard Review 859  
        51.7.4 Accelerated Approval (21 CFR Subpart H Sec. 314.510) 860  
     51.8 U.S. Pharmacopeia and FDA 860  
     51.9 CDER Freedom of Information Electronic Reading Room 861  
     51.10 Conclusion 861  
  52 The Kappa Index 862  
     52.1 Introduction 862  
     52.2 The Kappa Index 862  
        52.2.1 Reliability in Two Applications of a Dichotomous Test 863  
        52.2.2 Reliability for Tests with Multiple Categorical Outcomes 864  
     52.3 Inference for Kappa via Generalized Estimating Equations 866  
     52.4 The Dependence of Kappa on Marginal Rates 868  
     52.5 General Remarks 869  
     References 869  
  53 Treatment Interruption 872  
     53.1 Introduction 872  
     53.2 Therapeutic TI Studies in HIV/AIDS 872  
        53.2.1 Overview 872  
        53.2.2 Design Issues in Therapeutic TI studies 876  
     53.3 Management of Chronic Disease 879  
     53.4 Analytic Treatment Interruption in Therapeutic Vaccine Trials 880  
     53.5 Randomized Discontinuation Designs 881  
     53.6 Final Comments 882  
     References 882  
  54 Trial Reports: Improving Reporting, Minimizing Bias, and Producing Better Evidence-Based Practice 886  
     54.1 Introduction 886  
     54.2 Reporting Issues in Clinical Trials 886  
        54.2.1 Incomplete Reporting of Trial Methods 886  
        54.2.2 Selective Reporting of Outcomes 887  
        54.2.3 Failure to Report Trials 887  
        54.2.4 Spin in the Interpretation of Trials 888  
     54.3 Moral Obligation to Improve the Reporting of Trials 889  
     54.4 Consequences of Poor Reporting of Trials 889  
        54.4.1 Impact on Knowledge Syntheses 889  
     54.5 Distinguishing Between Methodological and Reporting Issues 890  
        54.5.1 Cochrane Risk of Bias Tool 891  
     54.6 One Solution to Poor Reporting: CONSORT 2010 and CONSORT Extensions 892  
     54.7 Impact of CONSORT 892  
     54.8 Guidance for Reporting Randomized Trial Protocols: SPIRIT 896  
     54.9 Trial Registration 896  
     54.10 Final Thoughts 897  
     References 898  
  55 U.S. Department of Veterans Affairs Cooperative Studies Program 902  
     55.1 Introduction 902  
     55.2 History of the Cooperative Studies Program (CSP) 902  
     55.3 Organization and Functioning of the CSP 904  
        55.3.1 Planning Request 904  
        55.3.2 Planning Phase 906  
        55.3.3 Evaluation Phase 906  
        55.3.4 Implementation of the Trial 907  
        55.3.5 Final Analysis and Publication Phase 910  
     55.4 Roles of the Biostatistician and Pharmacist in the CSP 911  
     55.5 Ongoing and Completed Cooperative Studies (1972–2000) 913  
     55.6 Current Challenges and Opportunities 913  
        55.6.1 Changes in the VA Health Care System 913  
        55.6.2 Concerns about Patients' Rights in Research 917  
        55.6.3 Efficiency and Interdependence of the CSPCCs 918  
        55.6.4 Ensuring the Adequacy of Flow of Ideas and Training of Investigators 918  
        55.6.5 Partnering with Outside Organizations 919  
     55.7 Concluding Remarks 921  
     Acknowledgments 921  
     References 923  
  56 Women's Health Initiative: Statistical Aspects and Selected Early Results 927  
     56.1 Introduction 927  
     56.2 WHI Clinical Trial and Observational Study 927  
     56.3 Study Organization 929  
     56.4 Principal Clinical Trial Comparisons, Power Calculations, and Safety and Data Monitoring 929  
     56.5 Biomarkers and Intermediate Outcomes 934  
     56.6 Data Management and Computing Infrastructure 934  
     56.7 Quality Assurance Program Overview 936  
     56.8 Early Results from the WHI Clinical Trial 937  
     56.9 Summary and Discussion 938  
     Acknowledgments. 938  
     References 938  
  57 World Health Organization (WHO): Global Health Situation 940  
     57.1 Introduction 940  
     57.2 Program Activities to the End of the Twentieth Century 941  
        57.2.1 African Region 942  
        57.2.2 Region of the Americas 942  
        57.2.3 Eastern Mediterranean Region 943  
        57.2.4 European Region 943  
        57.2.5 Southeast Asia Region 943  
        57.2.6 Western Pacific Region 943  
        57.2.7 Main Activities at Global and Regional Levels 944  
     57.3 Vision for the Use and Generation of Data in the First Quarter of the Twenty-First Century 945  
     Reference 949  
     Further Reading 949  
  Index 951  
  EULA 963  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  Audiobooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz