Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Progress of Nuclear Safety for Symbiosis and Sustainability - Advanced Digital Instrumentation, Control and Information Systems for Nuclear Power Plants
  Großes Bild
 
Progress of Nuclear Safety for Symbiosis and Sustainability - Advanced Digital Instrumentation, Control and Information Systems for Nuclear Power Plants
von: Hidekazu Yoshikawa, Zhijian Zhang
Springer-Verlag, 2014
ISBN: 9784431546108
322 Seiten, Download: 17418 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 6  
  Preface 8  
  Introduction 10  
     Part I: Full Digital I&C and HMIT Systems 10  
      Part II: Risk Monitor Methods for Large and Complex Plants 11  
      Part III: Condition Monitors for Plant Components 11  
      Part IV: Virtual and Augmented Reality for Nuclear Power Plants 12  
      Part V: Software Reliability V&V for Nuclear Power Plants 12  
  Acknowledgements 14  
  Contents 16  
  Part I: Full Digital I&C and HMIT Systems 19  
     1: Mitsubishi’s Computerized HSI and Digital I&C System for PWR Plants 20  
        1.1 Introduction 20  
        1.2 Mitsubishi’s Digital I&C Design Features 21  
           1.2.1 Overview System Description 21  
           1.2.2 Implementation in New Plants 22  
           1.2.3 Digital Upgrading 22  
        1.3 HSI System’s V&V Program for Digital I&C Design 22  
           1.3.1 Design Features of Mitsubishi’s HSI System 22  
           1.3.2 Implementation of the HSI System in the US-APWR 23  
           1.3.3 V&V Test Methodology 24  
           1.3.4 V&V Results 24  
        1.4 Conclusions 25  
        References 25  
     2: Design of an Integrated Operator Support System for Advanced NPP MCRs: Issues and Perspectives 27  
        2.1 Introduction 27  
        2.2 Operator Support Systems 28  
           2.2.1 What Are Operator Support Systems? 28  
           2.2.2 Human Cognitive Process Model of MCR Operators 29  
           2.2.3 Operator Support Systems for Cognitive Processes 31  
              2.2.3.1 Support Systems for the Monitoring/Detection Activity 31  
              2.2.3.2 Support Systems for the Situation Assessment Activity 31  
              2.2.3.3 Support Systems for the Response Planning Activity 32  
              2.2.3.4 Support Systems for the Response Implementation Activity 32  
           2.2.4 Integrated Decision Support System to aid Cognitive Activities of Operators (INDESCO) 32  
        2.3 How to Evaluate Operator Support Systems 33  
           2.3.1 Theoretical Evaluation Approach Using BBN Model 33  
              2.3.1.1 Assumptions for Evaluations 34  
              2.3.1.2 BBN Model for Situation Assessment of a Human Operator 34  
              2.3.1.3 HRA Event Trees 35  
              2.3.1.4 Evaluation Scenarios 35  
              2.3.1.5 Evaluation Results 36  
           2.3.2 Experimental Evaluation Using Workload and Accuracy 37  
              2.3.2.1 Implementation of the Target System 37  
              2.3.2.2 Experiment Conditions and Measures 38  
              2.3.2.3 Evaluation Results 38  
        2.4 Issues and Perspectives for Operator Support Systems 39  
           2.4.1 Trust of Operators on Operator Support Systems 39  
           2.4.2 Necessary and Useful Information 39  
           2.4.3 Evaluation of Operator Support Systems 40  
           2.4.4 Operators’ Dependence on Operator Support Systems 40  
        2.5 Summary and Conclusion 40  
        References 41  
     3: Concept of Advanced Back-up Control Panel Design of Digital Main Control Room 43  
        3.1 Introduction 43  
        3.2 Necessary of Advanced BCP 44  
        3.3 Issues for Advanced BCP Design 44  
           3.3.1 Design Overview of Advanced BCP 44  
              3.3.1.1 Configuration of BCP 44  
           3.3.2 Functional Assignment of BCP 44  
           3.3.3 Design of QDS-N 45  
              3.3.3.1 Allocation 45  
              3.3.3.2 System Configuration 46  
              3.3.3.3 Diversity 46  
              3.3.3.4 Qualification 46  
              3.3.3.5 Communication Between QDS-N and PICS 46  
           3.3.4 QDS-PAMS 46  
           3.3.5 Mini-Overview Display 46  
           3.3.6 Backup Indication for QDS PAMS 46  
           3.3.7 Optimizing BCP Layout Base on HFE Method 46  
           3.3.8 Functional and Task Analysis Optimization 46  
        3.4 Conclusion 47  
        Nomenclatures 47  
        References 47  
     4: U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors 48  
        4.1 Introduction 48  
        4.2 Advanced SMR R&D Program Overview 49  
        4.3 DOE Research on ICHMI Technology for SMRs 49  
           4.3.1 ICHMI Research Drivers for SMRs 49  
              4.3.1.1 Unique Operational and Process Characteristics 50  
              4.3.1.2 Affordability 50  
              4.3.1.3 Enhanced Functionality 51  
           4.3.2 Needs and Challenges for ICHMI Technology Research 51  
           4.3.3 DOE Research Activities Under the ICHMI Research Pathway 52  
        4.4 Conclusions 53  
        References 54  
     5: Application of FPGA to Nuclear Power Plant I&C Systems 55  
        5.1 Introduction 55  
        5.2 Overview of FPGA 56  
           5.2.1 FPGA Device 56  
           5.2.2 Development of FPGA 56  
        5.3 Application of FPGA in NPP 57  
           5.3.1 General 57  
           5.3.2 Development Process and Verification and Validation Efforts 57  
           5.3.3 Equipment Qualification (EQ) and Electromagnetic Compatibility (EMC) Qualification 58  
           5.3.4 Standards 58  
        5.4 Toshiba FPGA-Based I&C Systems 58  
           5.4.1 System Architecture 58  
           5.4.2 Power Range Neutron Monitor (PRNM) 59  
           5.4.3 RTIS 59  
           5.4.4 FPGA-Based Non-safety Systems 60  
           5.4.5 Advantage of Toshiba FPGA-Based I&C Systems 60  
        5.5 Conclusions 60  
        Nomenclatures 61  
        References 61  
     6: Prejob Briefing Using Process Data and Tagout/Line-up Data on 2D Drawings 62  
        6.1 Introduction 62  
        6.2 CAD Drawings 63  
           6.2.1 Existing Drawings Versus New Drawings 63  
           6.2.2 A Generic 2D CAD Format Developed by EDF 63  
        6.3 Links Between CAD Business Objects and Other Sources of Data 63  
           6.3.1 Business Objects are Central 63  
           6.3.2 Overview of the Architecture 63  
        6.4 Tagouts and Alignments Preparation on Drawings 64  
        6.5 Process Data Visualization on P&ID 65  
        6.6 Rapid Application Design Method 65  
           6.6.1 The Working with End Users 67  
           6.6.2 The Working with the Software Supplier 67  
        6.7 Conclusion 68  
        Nomenclatures 68  
        References 68  
     7: Study on Modeling of an Integrated Control and Condition Monitoring System for Nuclear Power Plants 69  
        7.1 Introduction 69  
        7.2 Overall Scheme of the Integrated Control and Condition Monitoring System 70  
           7.2.1 Function Analysis of the Integrated System 70  
              7.2.1.1 Control Subsystem Function Analysis 70  
              7.2.1.2 Condition Monitoring Subsystem Function Analysis 70  
              7.2.1.3 The Overall Function Analysis of the Control and Condition Monitoring Integrated System 70  
           7.2.2 System Hardware and Software Requirements 71  
           7.2.3 Characteristic Features of the Integrated System and Its Configuration 71  
        7.3 Control and Condition Monitoring Integrated System Modeling 73  
           7.3.1 Modeling Methods 73  
              7.3.1.1 Structured Modeling Methods IDEF0 73  
              7.3.1.2 Based on Scene Modeling Method UCM 74  
              7.3.1.3 IDEF0/UCM Integrated Modeling Methods 75  
           7.3.2 Modeling Study for the Integrated System Based on the IDEF0/UCM Integrated Methods 75  
              7.3.2.1 The Overall System Model 75  
              7.3.2.2 IDEF0 and UCM Model of the System Module 77  
        7.4 Conclusion 79  
        Nomenclatures 79  
        References 79  
     8: A Toolkit for Computerized Operating Procedure of Complex Industrial Systems with IVI-COM Technology 81  
        8.1 Introduction 81  
        8.2 Hierarchy for Operating Procedure 82  
        8.3 Design of Procedure Development Toolkit 82  
        8.4 IVI Architecture 83  
        8.5 Prototype System of Integrated Tool 84  
        8.6 Conclusions and Perspectives 85  
        References 86  
     9: Development and Design Guideline for Computerized Human–Machine Interface in the Main Control Rooms of Nuclear Power Plants 87  
        9.1 Introduction 87  
        9.2 Position of JEAG4617 in the Japanese Safety Regulations 88  
        9.3 Scope of Application 88  
        9.4 Organization of the Guidelines 88  
        9.5 Contents of the Guideline 89  
           9.5.1 Functional and Design Requirements 89  
              9.5.1.1 Functional Requirements 89  
              9.5.1.2 Design Requirements 89  
           9.5.2 Development and Design Processes 89  
           9.5.3 Commentary 89  
        9.6 Present Status of the Guideline 89  
        9.7 Computerized HMI in the MCR of NPPs in Japan 89  
        9.8 Operation in ABWR Type MCR at the Occurrence of the Niigata-Chuetsu- Oki Earthquake 91  
        9.9 Conclusions 91  
        References 91  
  Part II: Risk Monitor Methods for Large and Complex Plants 92  
     10: Overview of System Reliability Analyses for PSA 93  
        10.1 Introduction 93  
        10.2 What Is a System? 93  
        10.3 Systems Engineering and Related Fields 94  
           10.3.1 Systems Engineering 94  
           10.3.2 Operations Research (OR) 94  
              10.3.2.1 Cake Shop Example 94  
              10.3.2.2 Linear Programming 95  
              10.3.2.3 Decision Theory 95  
              10.3.2.4 Game Theory 95  
              10.3.2.5 Queuing Theory 95  
           10.3.3 Industrial Engineering (IE) 95  
           10.3.4 Quality Control (QC) 96  
        10.4 Probabilistic Safety Assessment 96  
        10.5 System Reliability Analysis Methods 96  
           10.5.1 Failure Mode and Effects Analysis (FMEA) 97  
           10.5.2 Hazard and Operability Analysis (HAZOP) 97  
           10.5.3 Reliability Block Diagram (RBD) 97  
           10.5.4 Markov Model 97  
           10.5.5 Event Tree Analysis (ETA) 98  
           10.5.6 Fault Tree Analysis (FTA) 99  
           10.5.7 GO Methodology 99  
           10.5.8 Petri Net 99  
           10.5.9 Bayesian Network (BN) 100  
            10.5.10 Digraph Matrix 100  
            10.5.11 Dynamic Event Tree 101  
            10.5.12 Goal Tree-Success Tree (GTST) 101  
            10.5.13 Continuous Event Tree 101  
            10.5.14 Discrete Event Simulation 101  
            10.5.15 Dynamic Flowgraph Methodology (DFM) 102  
            10.5.16 Cell-to-Cell Mapping Technique (CCMT) 102  
            10.5.17 Dynamic Logical Analysis Methodology (DYLAM) 102  
            10.5.18 GO-FLOW Methodology 103  
            10.5.19 Summary of the System Reliability Analyses 103  
        10.6 Summary 103  
        10.7 Answer of the Questions 104  
        References 104  
     11: A Systematic Fault Tree Analysis Based on Multi-level Flow Modeling 106  
        11.1 Introduction 106  
        11.2 Fault Tree Construction Based on the Model by Multi-level Flow Modeling 107  
           11.2.1 Multi-level Flow Modeling 107  
           11.2.2 Knowledge and Data for FT Construction 107  
           11.2.3 Influence Propagation by the Change of Functional Achievement 108  
           11.2.4 FT Construction Algorithm 109  
        11.3 FT Construction of a Simple Chemical Plant 109  
           11.3.1 Target Chemical Plant 109  
           11.3.2 MFM Model for a Cooling Plant of Nitric Acid 109  
           11.3.3 FT Construction Results 110  
           11.3.4 Discussions 110  
        11.4 Conclusions 112  
        References 112  
     12: Reliability Graph with General Gates: A Novel Method for Reliability Analysis 113  
        12.1 Introduction 113  
        12.2 Reliability Graph with General Gates 114  
           12.2.1 Reliability Graph 114  
           12.2.2 Reliability Graph with General Gates 115  
           12.2.3 Quantification of the RGGG 115  
              12.2.3.1 Transforming to Bayesian Networks 115  
              12.2.3.2 Modeling of RGGG 115  
              12.2.3.3 OR Node 116  
              12.2.3.4 AND Node 117  
              12.2.3.5 K-out-of-N Node 117  
           12.2.4 Examples 118  
        12.3 Extension of the RGGG 118  
           12.3.1 Dynamic RGGG 119  
              12.3.1.1 Addition of Dynamic Nodes 119  
              12.3.1.2 Quantification of Dynamic Nodes 120  
           12.3.2 A Software Tool for the Dynamic RGGG 122  
              12.3.2.1 Example 122  
           12.3.3 Repairable RGGG 123  
              12.3.3.1 Availability of Simple Repairable Process 124  
              12.3.3.2 Independent Repairable System 124  
              12.3.3.3 Dependent Series Repairable System 124  
              12.3.3.4 4K/M Redundant Parallel Repairable System 125  
              12.3.3.5 Example 126  
        12.4 Summary and Conclusions 130  
        References 130  
     13: Design of Risk Monitor for Nuclear Reactor Plants 132  
        13.1 Introduction 132  
        13.2 Distributed HMI System 133  
        13.3 Risk Monitor 133  
           13.3.1 Definition of Risk and Risk Ranking 134  
              13.3.1.1 Design Principle of Nuclear Safety 134  
              13.3.1.2 Risk to be Monitored 134  
              13.3.1.3 Severe Accident Phenomena 134  
              13.3.1.4 Risk Ranking 134  
           13.3.2 Anatomy of Fault Event Occurrence 135  
           13.3.3 Risk Monitor by Semiotic Modeling 136  
           13.3.4 Plant DiD Risk Monitor and Reliability Monitor 136  
           13.3.5 Visualization as Dynamic Risk Monitor 137  
        13.4 Example Practice of a Reliability Monitor 137  
           13.4.1 Description of Containment Spray System 137  
           13.4.2 FMEA for Containment Spray System 139  
           13.4.3 GO-FLOW Analysis for Containment Spray System 139  
        13.5 Concluding Remarks 141  
        References 141  
     14: Review of Practicing Level-2 Probabilistic Safety Analysis for Chinese Nuclear Power Plants 143  
        14.1 Introduction 143  
        14.2 Review of Each Technical Element 144  
           14.2.1 Familiarization with Plant Data and Systems 144  
           14.2.2 Interface with Level-1 144  
           14.2.3 Containment Performance Analysis 145  
           14.2.4 Severe Accident Progression and Containment Event Tree Analysis 145  
           14.2.5 Source Term and Release Category Analysis 146  
           14.2.6 Sensitivity, Importance, and Uncertainty Analysis 148  
           14.2.7 Outcome of Level-2 PSA 148  
        14.3 Conclusion 148  
        References 148  
     15: Risk Monitoring for Nuclear Power Plant Applications Using Probabilistic Risk Assessment 150  
        15.1 Introduction 150  
        15.2 Characteristics of the Risk Monitoring System COSMOS 151  
        15.3 Detailed Functions of COSMOS 151  
           15.3.1 COSMOS-FP 151  
              15.3.1.1 On-Line Maintenance Scheduling and Risk Evaluation 151  
              15.3.1.2 For Successive Execution of Systems and Event Trees (ETs) Corresponding to Exact Plant Conditions (In-Service, Standby or OOS of PSA Equipment) 152  
              15.3.1.3 For Realization of Speeding-Up Quantification 152  
           15.3.2 COSMOS-SD 153  
              15.3.2.1 For Shutdown Scheduling and Risk Evaluation 153  
              15.3.2.2 For Improvement of a Shutdown RISKMAN Model to Speed-Up Quantification for Various POS Status 153  
        15.4 Risk Monitoring Usage 154  
           15.4.1 At-Power Risk Monitoring in Case of On-Line Maintenance (COSMOS-FP) 154  
           15.4.2 Shutdown Risk Evaluation for Every Outage (COSMOS-SD) 154  
        15.5 Further Enhancements of COSMOS 156  
        15.6 Conclusion 156  
        Nomenclatures 156  
        References 156  
  Part III: Condition Monitors for Plant Components 157  
     16: Condition Monitoring for Maintenance Support 158  
        16.1 Introduction 158  
        16.2 Physical Modelling Method 159  
           16.2.1 Flow Sheets and Data Reconciliation 159  
           16.2.2 Residuals 159  
           16.2.3 Statistical Distribution of Residuals 159  
           16.2.4 Redundancy 160  
              16.2.4.1 Physical Redundancy 160  
              16.2.4.2 Analytical Redundancy 160  
              16.2.4.3 Apparent Redundancy 161  
           16.2.5 Modelling Equations 161  
              16.2.5.1 Fundamental Equations 161  
              16.2.5.2 Analytical Equations 161  
              16.2.5.3 Empirical Equations 161  
        16.3 Time Series Analysis 161  
        16.4 Analysis of Variances 162  
        16.5 Fault Detection in Practice 162  
        16.6 Conclusions 163  
        References 163  
     17: Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants 164  
        17.1 Introduction 164  
        17.2 Plant Life Management 165  
        17.3 Life-Beyond 60 Years 166  
        17.4 Online Measurements in NPPs 167  
           17.4.1 Active Components 167  
           17.4.2 Passive Components 167  
              17.4.2.1 Monitoring Large Defects in Metal Components 168  
              17.4.2.2 Monitoring Early Degradation in Metals 170  
              17.4.2.3 Primary Containment Structures 171  
              17.4.2.4 Cable Condition Monitoring 172  
        17.5 Prognostics for the Nuclear Power Industry 173  
           17.5.1 Integrated Prognostic 175  
        17.6 Technology/Knowledge Gaps 176  
        17.7 Conclusions 176  
        References 176  
     18: Using Condition-based Maintenance and Reliability-centered Maintenance to Improve Maintenance in Nuclear Power Plants 180  
        18.1 Introduction 180  
        18.2 Comparison of Different Maintenance Strategies in NPPs 181  
        18.3 Theoretical Foundation and Methodology of CBM 183  
        18.4 Application Experience of CBM in Daya Bay Nuclear Power Base 185  
           18.4.1 Optimization of Equipment Maintenance Programme by Introducing CBM Methodologies 185  
           18.4.2 The Development of PdM Management System 186  
           18.4.3 The Development of Intelligent Failure Diagnosis Expert System 187  
        18.5 Conclusion 187  
        Nomenclatures 188  
        References 188  
     19: Advanced Management of Pipe Wall Thinning Based on Prediction-Monitor Fusion 189  
        19.1 Introduction 189  
        19.2 Pipe Wall Thinning Management 189  
        19.3 Prediction by FAC Analyses 190  
        19.4 Condition Monitoring 191  
        19.5 Reliability Assessment 192  
        19.6 New Strategy of PWTM 194  
        19.7 Concluding Remarks 194  
        References 195  
     20: Non-destructive Evaluation of Material State by Acoustic, Electromagnetic and Thermal Techniques 196  
        20.1 Introduction 196  
        20.2 NDE Using Material Properties 197  
           20.2.1 Specimens for NDE Experiments 197  
           20.2.2 Acoustic Impedance Method 197  
           20.2.3 Magnetoacoustoelasticity 197  
           20.2.4 Magnetic Flux Leakage Testing 197  
           20.2.5 Thermograph with Magnetic Heating 197  
        20.3 NDE of Mechanical Degradation 197  
           20.3.1 Specimens 197  
           20.3.2 Acoustic Impedance Method 198  
           20.3.3 Magnetoacoustoelasticity 198  
           20.3.4 Magnetic Flux Leakage Testing 199  
           20.3.5 Thermograph with Magnetic Heating 199  
        20.4 NDE of Plastic Strain and Residual Stress 199  
           20.4.1 Specimens 199  
           20.4.2 Acoustic Impedance Method 200  
           20.4.3 Magnetoacoustoelasticity 201  
           20.4.4 Magnetic Flux Leakage Testing 202  
           20.4.5 Thermograph with Magnetic Heating 203  
        20.5 Conclusion 204  
        References 204  
     21: Non-contact Acoustic Emission Measurement for Condition Monitoring of Bearings in Rotating Machines Using Laser Interferometry 205  
        21.1 Introduction 205  
        21.2 Experimental System 206  
        21.3 Experimental Results and Discussion 207  
        21.4 Conclusions 213  
        References 213  
     22: Crack Growth Monitoring by Strain Measurements 214  
        22.1 Introduction 214  
        22.2 Crack Growth Monitoring Method 215  
           22.2.1 Basic Procedure 215  
           22.2.2 Procedure for Multiple Strain Measurements 216  
        22.3 Experiment 217  
           22.3.1 Experimental Procedure 217  
           22.3.2 Experimental Results 217  
        22.4 Estimation of Crack Size 219  
           22.4.1 Finite Element Analysis 219  
           22.4.2 Estimation Using Single Strain Gage 219  
           22.4.3 Estimation Using Multiple Strain Gages 220  
        22.5 Discussion 220  
        22.6 Conclusion 221  
        References 221  
     23: Acoustic Monitoring of Rotating Machine by Advanced Signal Processing Technology 223  
        23.1 Introduction 223  
        23.2 Signal Processing Methods 224  
           23.2.1 Pre-processing for Feature Extraction 224  
              23.2.1.1 Log-Scale Auto-Power Spectral Density (log-APSD) 224  
              23.2.1.2 Mel-Scale Auto-Power Spectral Density (Mel-scale-APSD) 224  
              23.2.1.3 Cepstrum [ 5 ] 224  
           23.2.2 Dimension Reduction for Visualization 225  
              23.2.2.1 PCA Based Classification 225  
              23.2.2.2 KPCA Based Classification [ 6, 7 ] 225  
              23.2.2.3 Heuristic Classification 225  
           23.2.3 State Discrimination for Anomaly Monitoring 226  
              23.2.3.1 State Discrimination by PNN [ 8 ] 226  
              23.2.3.2 State Discrimination by SVDD [ 9 ] 226  
        23.3 Test Results 227  
           23.3.1 Test Facility and Measurement 227  
           23.3.2 Evaluation of Classification Performance of PCA, KPCA and a Heuristic Method 227  
           23.3.3 Discrimination Results by PNN and SVDD 229  
        23.4 Conclusions 230  
        References 231  
     24: The Wireless Diagnostic System for Motor Operated Valves 232  
        24.1 Introduction 232  
        24.2 Development of New Diagnostic System 233  
           24.2.1 Points and Features 233  
           24.2.2 Outline of Diagnostic Method 233  
           24.2.3 Mock-Up Test Results 233  
           24.2.4 Confirmation of Design Base Performance 233  
        24.3 Development of Wireless Remote Diagnostic System 234  
           24.3.1 Background of the Development 234  
           24.3.2 Outline of Wireless Remote Diagnostic System 234  
        24.4 Conclusions 236  
        References 236  
  Part IV: Virtual and Augmented Reality for Nuclear Power Plants 237  
     25: Virtual and Augmented Reality in the Nuclear Plant Lifecycle Perspective 238  
        25.1 Introduction 238  
           25.1.1 The Halden Boiling Heavy Water Reactor 239  
           25.1.2 Safety MTO: Man Technology Organisation 239  
           25.1.3 Halden Virtual Reality Centre (HVRC) 239  
           25.1.4 Definition of Virtual Reality 240  
           25.1.5 Definition of Augmented Reality 240  
           25.1.6 Areas of Use of VR and AR at IFE 240  
        25.2 VR and AR in Design 240  
           25.2.1 Reuse of 3D Models in the Design Phase 241  
           25.2.2 Control Room Design and Validation Using VR 241  
           25.2.3 User-Friendly AR Technology for Real World Use 242  
              25.2.3.1 The AR Solution Developed at IFE 242  
              25.2.3.2 The Role of AR in the Plant Life Cycle 242  
        25.3 VR in Operation and Maintenance 243  
           25.3.1 Requirements to Training Safer Refuelling 243  
           25.3.2 VR Applications at LNPP for Training 243  
           25.3.3 Creating Up-to-Date Data and 3D Models 244  
           25.3.4 Use of the VR Solutions in Daily Training 244  
           25.3.5 Future Enhancements for Use on New Scenarios 244  
        25.4 VR in Decommissioning 244  
           25.4.1 Challenges in Decommissioning Planning 245  
           25.4.2 Establishing a Visualisation Centre at ChNPP 246  
           25.4.3 Overall Features of the CDVC 246  
           25.4.4 Reducing Radiation Exposure Dose Using VR 246  
           25.4.5 Efficient Reuse of 3D Data 246  
        25.5 Future Plans at LNPP and ChNPP 246  
        25.6 Nuclear Energy’s Role in Future Sustainable Energy Supplies 246  
           25.6.1 VR and AR Contribution to the Nuclear Safety for Symbiosis and Sustainability 247  
        25.7 Summary 248  
        References 249  
     26: A Feasibility Study on Worksite Visualization System Using Augmented Reality for Fugen NPP 251  
        26.1 Introduction 251  
        26.2 Decommissioning of Fugen 251  
           26.2.1 Outline of Fugen 251  
           26.2.2 Decommissioning Program of Fugen 252  
           26.2.3 Current Status of Decommissioning 254  
        26.3 Decommissioning Engineering Support System (DEXUS) 255  
        26.4 Worksite Visualization System (WVS) 255  
           26.4.1 Reference Support for Cutting Lines and Restraint Parts 256  
           26.4.2 Record Support for Progress of Dismantling 256  
           26.4.3 Prototype System Development 256  
              26.4.3.1 Realization of Superimposing 3D CAD Data 256  
              26.4.3.2 Cutting Function of 3D CAD Data 257  
              26.4.3.3 User Interface and Hardware 257  
        26.5 Feasibility Evaluation of WVS 258  
           26.5.1 Purpose and Outline of Evaluation 258  
           26.5.2 Evaluation Method 258  
              26.5.2.1 Evaluation Environment 258  
              26.5.2.2 Evaluators 258  
              26.5.2.3 Dismantling Scenario 258  
              26.5.2.4 Procedure of Evaluation 259  
              26.5.2.5 Questionnaire 259  
           26.5.3 Evaluation Result 259  
           26.5.4 Discussion 259  
           26.5.5 System Function 260  
           26.5.6 Usability 261  
        26.6 Summary 261  
        References 261  
     27: Augmented Reality for Improved Communication of Construction and Maintenance Plans in Nuclear Power Plants 262  
        27.1 Introduction 262  
        27.2 Augmented Reality 263  
           27.2.1 AR Binoculars 263  
        27.3 Real World Applications 264  
           27.3.1 Augmented Reality and Construction 264  
           27.3.2 Augmented Reality and Training of Operators 265  
           27.3.3 Augmented Reality and Maintenance 266  
        27.4 Conclusion 267  
        References 267  
     28: 3D Representation of Radioisotopic Dose Rates Within Nuclear Plants for Improved Radioprotection and Plant Safety 268  
        28.1 Introduction 268  
        28.2 EDF CZT Gamma Spectrometer 269  
           28.2.1 Acquisitions 269  
           28.2.2 Spectral Analysis 270  
        28.3 Dose Calculations 270  
        28.4 Combining Radiological Information and VR 271  
           28.4.1 Example 1: Optimising Shielding 271  
              28.4.1.1 Visualising Radioisotopic Dose Maps 271  
           28.4.2 Example 2: Radiation Decay 272  
        28.5 Discussion and Conclusions 273  
        References 274  
     29: Wide Area Tracking Method for Augmented Reality Supporting Nuclear Power Plant Maintenance Work 275  
        29.1 Introduction 275  
        29.2 Proposal of a Tracking Method Using Multi-range Markers 276  
           29.2.1 Design of Multi-range Markers 276  
           29.2.2 Algorithm to Recognize Multi-range Markers 276  
           29.2.3 Algorithm to Calculate the Relative Position and Orientation Between a Camera and Markers 278  
        29.3 Evaluation of the Proposed Method 278  
           29.3.1 Recognition Range 278  
           29.3.2 Stability of Marker Recognition Under Variable Illumination Conditions 279  
           29.3.3 Processing Speed of Tracking 279  
           29.3.4 Misrecognition of Markers 279  
           29.3.5 Area Within Which Tracking Can Be Executed 279  
        29.4 Conclusions 280  
        References 281  
  Part V: Software Reliability V&V for Nuclear Power Plants 282  
     30: Research on Software Systems Dependability at the OECD Halden Reactor Project 283  
        30.1 Introduction 283  
        30.2 Software Safety Integrity 284  
        30.3 The Research Problems 285  
           30.3.1 Software Development 285  
           30.3.2 Software Assurance 286  
           30.3.3 Software Approval and Deployment 287  
        30.4 Safety Demonstration 288  
        30.5 Conclusions 288  
        References 289  
     31: High Level Issues in Reliability Quantification of Safety-Critical Software 290  
        31.1 Introduction 290  
        31.2 BBN Modeling 291  
           31.2.1 Assessment Approaches 291  
           31.2.2 Consideration on Evidence 291  
           31.2.3 Cause-Consequence Relation 292  
        31.3 Statistical Testing 293  
        31.4 Conclusions 294  
        Nomenclature 294  
        References 294  
     32: Software Reliability Analysis in Probabilistic Risk Analysis 296  
        32.1 Introduction 296  
        32.2 State-of-the-Art of Software Reliability in PRA for Nuclear Power Plants 296  
           32.2.1 Software Reliability 296  
           32.2.2 Software Reliability Quantification 297  
           32.2.3 Software Reliability Estimation in PRA 297  
              32.2.3.1 Screening Out Approach 297  
              32.2.3.2 Screening Value Approach 298  
              32.2.3.3 Expert Judgement Approach 298  
              32.2.3.4 Operating Experience Approach 298  
           32.2.4 Conclusions on Software Reliability in PRA 298  
        32.3 Failure Modes Taxonomy 299  
           32.3.1 Background 299  
           32.3.2 General Approach 299  
           32.3.3 Requirements for the Failure Modes Taxonomy 299  
           32.3.4 Levels of Details of the Taxonomy 300  
           32.3.5 Failure Modes 300  
        32.4 Safety Justification Framework 300  
           32.4.1 Safety Case 300  
           32.4.2 Software Reliability Assessment Case 301  
           32.4.3 Software Reliability Claims 301  
           32.4.4 Bayesian Belief Network (BBN) 301  
           32.4.5 Types of Evidence 301  
           32.4.6 BBN Model Suggestions in HARMONICS 302  
        32.5 Conclusions 302  
        Nomenclatures 303  
        References 303  
  About the Editors 305  
  Author Index 307  
  Subject Index 309  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  Audiobooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz